Confinement – Mardi 31 mars 2020 – Mathématiques cycles 3 et 4

Partage

Cycle 3 (6ème)

I. Correction de l’enclos d’hier

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 3 1 0
1 0 0 1 1 3 2 2 2 1
3 1 2 3 3 2 2 1 1 2
2 3 2 0 1 1 2 1 0 1
1 1 0 0 0 1 3 1 0 1
1 0 1 0 1 0 1 0 0 1
2 2 3 2 3 1 0 0 0 1
1 1 1 3 2 2 1 1 1 2

II. Nombres décimaux : exercices en ligne

Sur Mathenpoche, approximation décimale

Cycle 4 (3ème)

I. Correction des exercices d’hier

Exercice 1

image/svg+xml H A B 2,4 cm 6,6 cm ?

Dans le triangle HAB rectangle en H, on cherche une relation entre l’angle aigu HAB son coté adjacent et son coté opposé.

HB / HA

= tan(HAB)

d’où

6,6 / 2,4

= tan(HAB)

On a donc HAB = ArcTan( 6,6 / 2,4 ) ≈ 70°.

Exercice 2

image/svg+xml S M F 7,4 cm ? 71°

Dans le triangle SMF rectangle en S, on cherche une relation entre l’angle aigu SMF son coté opposé et l’hypoténuse du triangle.

SF / MF

= sin(SMF)

d’où

7,4 / MF

= sin(71°)

On a donc MF = 7,4 / sin(71°) ≈ 7.8 cm

Exercice 3

image/svg+xml Z F W ? 7,7 cm 61°

Dans le triangle ZFW rectangle en Z, on cherche une relation entre l’angle aigu ZFW son coté adjacent et son coté opposé.

ZW / ZF

= tan(ZFW)

d’où

7,7 / ZF

= tan(61°)

On a donc ZF = 7,7 / tan(61°) ≈ 4.3 cm

Exercice 4

image/svg+xml H S D ? 7 cm 24°

Dans le triangle HSD rectangle en H, on cherche une relation entre l’angle aigu HDS son coté adjacent et l’hypoténuse du triangle.

HD / SD

= cos(HDS)

d’où

HD / 7

=cos(24°)

On a donc HD = 7 × cos(24°) ≈ 6.4 cm

Exercice 5

image/svg+xml C N L 1,9 cm 6,8 cm ?

Dans le triangle CNL rectangle en C, on cherche une relation entre l’angle aigu CLN son coté opposé et l’hypoténuse du triangle.

CN / NL

= sin(CLN)

d’où

1,9 / 6,8

= sin(CLN)

On a donc CLN = ArcSin( 1,9 / 6,8 ) ≈ 16°.

II. Notion de fonction

III. Exercices en ligne


Partage

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *