3ème – Objectif lycée (2) – Arithmétique

Spread the love

Rappel

Vos familles ont été informé via pronote et l’ENT que le collège met en place pendant la deuxième semaine des cours à distance à raison d’une heure par jour en français  et en maths. L’objectif étant le lycée, quel qu’il soit, en donnant aux élèves les connaissances adéquates pour la rentrée en seconde.

Les séances de ce lundi se sont bien passées pour ceux qui ont fait l’effort de s’investir.

Corrections des activités :

Fractions :

Exercice 1

Définition

Soit a et b deux nombres, b non nul
Le quotient

a / b

est le nombre qui, multiplié par b, donne a.

Quel est le nombre qui multiplié par 5 donne 31 ?

C’est

31 / 5

Quel est le nombre qui multiplié par 47 donne 72 ?

C’est

72 / 47

Exercice 2

Il s’agit de trouver une fraction égale ayant un dénominateur (entier positif) plus petit.

-99 / 42

=

-33 / 14


-52 / 79

est irréductible

57 / 80

est irréductible

61 / 62

est irréductible

Exercice 3

Pour comparer des nombres en écriture fractionnaire, on peut les écrire avec le même dénominateur positif puis les ranger dans le même ordre que leurs numérateurs.
Mais ici, il y a plus simple, on remarque que les deux fractions sont de signes contraires !

92 / -86

≤ 0 ≤

-7 / -88

Exercice 4

Pour additionner (ou soustraire) des nombres en écriture fractionnaire ayant le même dénominateur,
  • on additionne (ou on soustrait) les numérateurs et
  • on garde le dénominateur commun.
Il est souvent (mais pas toujours) judicieux de simplifier les fractions avant d’effectuer les calculs.

11 / 7

+

28 / -25

=

11 / 7

+

-28 / 25

=

275 / 175

+

-196 / 175

=

79 / 175



9 / 27

50 / 47

=

1 / 3

50 / 47

=

47 / 141

150 / 141

=

-103 / 141


Exercice 5

Il est souvent judicieux de simplifier les fractions avant d’effectuer les calculs.

Pour multiplier des nombres en écriture fractionnaire, on multiplie les numérateurs entre eux et les dénominateurs entre eux.

15 / 10

×

-21 / 5

=

3 / 2

×

-21 / 5

=

3 × -3 × 7 / 2 × 5

=

-63 / 10

Diviser par un nombre non nul revient à multiplier par l’inverse de ce nombre.

49 / 46

:

13 / 45

=

49 / 46

×

45 / 13

=

72 × 32 × 5 / 2 × 23 × 13

=

2205 / 598

Puissances :

Exercice 1

Si p=0 (et n≠0) alors np=1

Si p>0 alors np est le produit du facteur n par lui même p fois

et n-p est l’inverse du produit du facteur n par lui même p fois

  • 2-3 =

    1 / 2 × 2 × 2

    =

    1 / 8

    = 0.125
  • (-3)-5 =

    1 / -3 × (-3) × (-3) × (-3) × (-3)

    =

    1 / -243

    =

    -1 / 243

  • (-8)-4 =

    1 / -8 × (-8) × (-8) × (-8)

    =

    1 / 4096

    = 0.000244140625
  • 42 = 4 × 4 = 16

Exercice 2

Pour multiplier des puissances d’un même nombre, on s’aperçoit en revenant à la définition qu’il suffit d’ajouter les exposants !

  • 2-2 × 27 = 25
  • (-20)2 × (-20)-13 = (-20)-11
  • (-5)-4 × (-5)-17 = (-5)-21
  • (-19)0 × (-19)1 = (-19)1

Exercice 3

Pour simplifier le quotient de deux puissances d’un même nombre, on s’aperçoit en revenant à la définition qu’il suffit de soustraire les exposants !

  • (-20)-2 / (-20)20

    = (-20)-22
  • 170 / 171

    = 17-1
  • 7-9 / 7-16

    = 77
  • (-4)2 / (-4)-4

    = (-4)6

Exercice 4

Pour tout entier n positif, 10n= 10…0 avec n zéros et10-n= 0,0…01 avec n zéros

  • 1 000 000 000 = 109
  • 0,000 000 000 1 = 10-10
  • 1 000 000 = 106
  • 0,01 = 10-2

Exercice 5

Tout nombre décimal non nul peut être écrit en notation scientifique, c’est-à-dire sous la forme a × 10n , où a est un nombre décimal ayant un seul chiffre non nul pour partie entière et où n est un nombre entier relatif. a est appelé mantisse du nombre.

  • 0,000 983 2 = 9,832 × 10-4
  • – 58 260 = -5,826 × 104
  • 8 369 = 8,369 × 103
  • – 0,090 74 = -9,074 × 10-2

Les séances suivantes auront lieu mardi 21, jeudi 23 et vendredi 24 avril de 9 heures à 11 heures.

Même si une certaine flexibilité reste possible, je m’occuperai en priorité des 3E de 9 heures à 10 heures et des 3C de 10 heures à 11 heures.

La veille de chaque séance, je posterai sur le blog des exercices sur une ou deux thématiques (Fractions, Puissances, Trigonométrie, Arithmétique, Calcul littéral…) et, à l’heure de la séance je serai disponible par chat, mail et téléphone (Je vous ai communiqué mon numéro via l’ENT).

Exercice 1. Encadrements

Encadre 957 puis 643 par deux multiples consécutifs de 16.

Exercice 2. Le plus grand multiple

Quel est le plus grand multiple de 6 inférieur à 81 ?

Exercice 3. Le plus petit multiple

Quel est le plus petit multiple de 19 supérieur à 270 ?

Exercice 4. Décomposition

Décompose les nombres suivants en produit de facteurs premiers : 12474; 8330; 5184 et 800

Exercice 5. Décomposition 2

Donne tous les diviseurs des nombres suivants : 207; 391; 35 et 933

Exercice 6. Nombres premiers

Les nombres suivants sont-ils premiers ?

  • Huit-cent-cinquante.
  • Deux-mille-six-cent-cinquante-quatre.
  • Dix-mille-deux-cent-quatre-vingt-un.
  • Cent-zéro-mille-six-cent-quatre-vingts.

Ressources :

Découvrez : une large gamme de logiciels en ligne et hors-ligne,des applications pour tablettes tactiles,
des fichiers d’exercices et des dossiers pédagogiques,les manuels scolaires et les cahiers iParcours,
des jouets multimédia pour les petits,des fichiers d’exercices pour les élèves, des applications pour iPhone et iPad,
des appareils photos, micros et accessoires audio spécialement conçus pour les enfants,des outils numériques : micros-enregistreurs et visualiseurs, etc.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *