Confinement – JOUR 4 – Mathématiques cycles 3 et 4

Cycle 3 (6ème…)

I. Correction des exercices sur les entiers

Exercice 1

  • Cinq-cent-quatre-vingt-onze. : 591
  • Neuf-mille-cinquante-cinq. : 9 055
  • Trente-cinq-mille-cinq-cent-quinze. : 35 515
  • Un million cinq-cent-quatre-vingt-dix-mille-cinq-cent-quarante-six. : 1 590 546
  • Cinquante-cinq milliards neuf-cent-soixante-seize millions trois-cent-cinquante-deux-mille-cinq-cent-soixante-sept. : 55 976 352 567

Exercice 2

  • 1 193 : Mille-cent-quatre-vingt-treize.
  • 2 972 : Deux-mille-neuf-cent-soixante-douze.
  • 143 510 : Cent-quarante-trois-mille-cinq-cent-dix.
  • 617 276 155 : Six-cent-dix-sept millions deux-cent-soixante-seize-mille-cent-cinquante-cinq.
  • 34 627 625 278 : Trente-quatre milliards six-cent-vingt-sept millions six-cent-vingt-cinq-mille-deux-cent-soixante-dix-huit.

Exercices 3

Dans le nombre 2 478 631 950 (Deux milliards quatre-cent-soixante-dix-huit millions six-cent-trente-et-un-mille-neuf-cent-cinquante.),

  • Le chiffre des unités de milliards est 2
  • Le chiffre des dizaines d’unités est 5
  • Le chiffre des centaines d’unités est 9
  • Le chiffre des centaines de millions est 4

Exercices 4

Dans le nombre 7 631 098 542 (Sept milliards six-cent-trente-et-un millions quatre-vingt-dix-huit-mille-cinq-cent-quarante-deux.),

  • Le nombre de dizaines de mille est 763 109 (Sept-cent-soixante-trois-mille-cent-neuf.)
  • Le nombre d’unités simples est 7 631 098 542 (Sept milliards six-cent-trente-et-un millions quatre-vingt-dix-huit-mille-cinq-cent-quarante-deux.)
  • Le nombre de dizaines de millions est 763 (Sept-cent-soixante-trois.)
  • Le nombre de centaines de millions est 76 (Soixante-seize.)

II Activité : produit et somme d’entiers :

Dans ce premier tableau, remplace chaque lettre par un nombre entier naturel compris entre 1 et 9, sachant que :

  • Chaque nombre n’est utilisé qu’une seule fois
  • Les produits des nombres de chaque ligne et chaque colonne sont indiqués à l’extérieur du tableau
10216168
160 ABC
84 DEF
27 GHI

Plus difficile !

Dans ce second tableau, remplace chaque lettre par un nombre entier naturel compris entre 1 et 9, sachant que :

  • Chaque nombre n’est utilisé qu’une seule fois
  • Les sommes des nombres de chaque ligne et chaque colonne sont indiqués à l’extérieur du tableau
15921
20 ABC
7 DEF
18 GHI

Il y a 2 solutions !

La solution sera donnée demain

Une activité en ligne :

https://ressources.sesamath.net/matoumatheux/www/num/decimaux/camion.htm#6

Cycle 4 (3 ème….)

I. Corrections des exercices d’hier (Puissances)

Exercice 1

Si p=0 (et n≠0) alors np=1

Si p>0 alors np est le produit du facteur n par lui même p fois

et n-p est l’inverse du produit du facteur n par lui même p fois

  • 32 = 3 × 3 = 9
  • 90 = 1
  • 4-4 =

    1 / 4 × 4 × 4 × 4

    =

    1 / 256

    = 0.00390625
  • (-4)0 = 1

Exercice 2

Pour multiplier des puissances d’un même nombre, on s’aperçoit en revenant à la définition qu’il suffit d’ajouter les exposants !

  • 10-14 × 10-18 = 10-32
  • 30 × 31 = 31
  • (-9)-2 × (-9)17 = (-9)15
  • (-18)2 × (-18)-6 = (-18)-4

Exercice 3

Pour simplifier le quotient de deux puissances d’un même nombre, on s’aperçoit en revenant à la définition qu’il suffit de soustraire les exposants !

  • 14-2 / 1418

    = 14-20
  • (-6)-12 / (-6)-19

    = (-6)7
  • (-15)0 / (-15)1

    = (-15)-1
  • (-2)2 / (-2)-4

    = (-2)6

Exercice 4

Pour tout entier n positif, 10n= 10…0 avec n zéros et10-n= 0,0…01 avec n zéros

  • 0,000 000 1 = 10-7
  • 1 000 = 103
  • 0,000 000 000 001 = 10-12
  • 10 000 = 104

Exercice 5

Tout nombre décimal non nul peut être écrit en notation scientifique, c’est-à-dire sous la forme a × 10n , où a est un nombre décimal ayant un seul chiffre non nul pour partie entière et où n est un nombre entier relatif. a est appelé mantisse du nombre.

  • 437 400 = 4,374 × 105
  • – 7 504 000 = -7,504 × 106
  • – 0,269 5 = -2,695 × 10-1
  • 0,039 74 = 3,974 × 10-2

II Activité

Une fois n’est pas coutume, l’activité pour le cycle 3, “Produit et somme d’entiers”, plus haut dans l’article, est aussi intéressante pour le cycle 4 ! Enjoy ! (Correction demain)

III Relire la leçon

https://site2wouf.fr/litterale_3eme.php

IV. Exercices en ligne :

https://ressources.sesamath.net/matoumatheux/www/num/algebre/facto1.htm#3

Confinement – JOUR 3 – Mathématiques cycles 3 et 4

Cycle 3 (6ème…)

I. Correction du calcul mental

14 + 6 = 2015 : 3 = 5
11 × 5 = 5523 – 21 = 2
17 + 3 = 2011 + 3 = 14
20 – 1 = 1923 + 8 = 31
21 – 1 = 200 + 14 = 14
21 + 11 = 3221 + 22 = 43
42 – 22 = 2021 + 1 = 22
35 – 22 = 130 + 9 = 9
21 – 4 = 174 × 10 = 40
23 + 11 = 3417 + 18 = 35

II. Révisions (Les entiers naturels)

Exercice 1

Ecris les nombres suivants en chiffres :

  • Cinq-cent-quatre-vingt-onze.
  • Neuf-mille-cinquante-cinq.
  • Trente-cinq-mille-cinq-cent-quinze.
  • Un million cinq-cent-quatre-vingt-dix-mille-cinq-cent-quarante-six.
  • Cinquante-cinq milliards neuf-cent-soixante-seize millions trois-cent-cinquante-deux-mille-cinq-cent-soixante-sept.

Exercice 2

Ecris les nombres suivants en lettres :

  • 1 193
  • 2 972
  • 143 510
  • 617 276 155
  • 34 627 625 278

Exercice 3

Dans le nombre 2 478 631 950 , quel est le chiffre des :

  • unités de milliards
  • dizaines d’unités
  • centaines d’unités
  • centaines de millions

Exercice 4

Dans le nombre 7 631 098 542 , combien y-a-t-il de ? (quel est le nombre de ?)

  • dizaines de mille
  • unités simples
  • dizaines de millions
  • centaines de millions

La solution sera donnée demain

III. Leçon

https://ressources.sesamath.net/coll/send_file.php?file=cah/valide/manuel_cours_2013_6N3.pdf

IV. Exercices en ligne :

Il s’agit de deviner un nombre décimal : exercice

Cycle 4 (3 ème….)

I. Corrections des exercices d’hier (Fractions)

Exercice 1

Définition

Soit a et b deux nombres, b non nul
Le quotient

a / b

est le nombre qui, multiplié par b, donne a.

Quel est le nombre qui multiplié par 3 donne 45 ?

C’est

45 / 3

=

15 / 1

Quel est le nombre qui multiplié par 36 donne 85 ?

C’est

85 / 36

Exercice 2

Il s’agit de trouver une fraction égale ayant un dénominateur (entier positif) plus petit.

66 / -68

=

-33 / 34


-99 / -72

=

11 / 8


86 / -21

=

-86 / 21


31 / -29

=

-31 / 29


Exercice 3

Pour comparer des nombres en écriture fractionnaire, on peut les écrire avec le même dénominateur positif puis les ranger dans le même ordre que leurs numérateurs.
Mais ici, il y a plus simple, on remarque que les deux fractions sont de signes contraires !

68 / -77

≤ 0 ≤

-97 / -33

Exercice 4

Pour additionner (ou soustraire) des nombres en écriture fractionnaire ayant le même dénominateur,
  • on additionne (ou on soustrait) les numérateurs et
  • on garde le dénominateur commun.
Il est souvent (mais pas toujours) judicieux de simplifier les fractions avant d’effectuer les calculs.

-21 / 40

+

37 / 43

=

-903 / 1720

+

1480 / 1720

=

577 / 1720



-8 / 19

-14 / 33

=

-264 / 627

-266 / 627

=

2 / 627


Exercice 5

Il est souvent judicieux de simplifier les fractions avant d’effectuer les calculs.

Pour multiplier des nombres en écriture fractionnaire, on multiplie les numérateurs entre eux et les dénominateurs entre eux.

-13 / -16

×

46 / 37

=

13 / 16

×

46 / 37

=

13 × 2 × 23 / 24 × 37

=

299 / 296

Diviser par un nombre non nul revient à multiplier par l’inverse de ce nombre.

-14 / 51

:

34 / 24

=

-14 / 51

×

12 / 17

=

-2 × 7 × 22 × 3 / 17 × 3 × 17

=

-56 / 289

II. Exercices de révision (Puissances)

Exercice 1

Donne les écritures décimales si elles existent (fractionnaires sinon) de :
  • 32
  • 90
  • 4-4
  • (-4)0

Exercice 2

Écris sous la forme d’une puissance :
  • 10-14 × 10-18
  • 30 × 31
  • (-9)-2 × (-9)17
  • (-18)2 × (-18)-6

Exercice 3

Écris sous la forme d’une puissance :
  • 14-2 / 1418

  • (-6)-12 / (-6)-19

  • (-15)0 / (-15)1

  • (-2)2 / (-2)-4

Exercice 4

Écris sous la forme d’une puissance de 10:
  • 0,000 000 1
  • 1 000
  • 0,000 000 000 001
  • 10 000

Exercice 5

Écris en notation scientifique les nombres suivants :
  • 437 400
  • – 7 504 000
  • – 0,269 5
  • 0,039 74

La solution sera donnée demain

III Relire la leçon

https://site2wouf.fr/litterale_3eme.php

IV. Exercices en ligne

https://ressources.sesamath.net/matoumatheux/www/num/algebre/redu10.htm#3

Confinement – JOUR 2 – Mathématiques cycles 3 et 4

Cycle 3 (6ème…)

I. Correction de “l’enclos d’hier”

Rappel de l’énoncé:

Un enclos est composé de segments verticaux et horizontaux joignant deux points de la grille et il forme une boucle fermée qui ne se croise pas. L’indice situé dans une case donne le nombre de segments d’enclos entourant cette case.

Correction :

II. Calcul mental

Avec un papier, un crayon et en se laissant 5 min, recopier le tableau suivant en complétant les égalités:

Trouve les nombres manquants :

14 + ….. = 2015 : ….. = 5
11 × 5 = …..23 – 21 = …..
17 + ….. = 2011 + ….. = 14
20 – 1 = …..23 + ….. = 31
21 – 1 = …..0 + ….. = 14
21 + ….. = 32….. + 22 = 43
….. – 22 = 20….. + 1 = 22
35 – 22 = …..0 + ….. = 9
21 – 4 = …..4 × ….. = 40
23 + ….. = 3417 + 18 = …..

La solution sera donnée demain

III. Activité en ligne (nombres décimaux) :

https://ressources.sesamath.net/matoumatheux/www/num/decimaux/3cartesQ1.htm#6

N’hésitez pas à poser des questions en utilisant le champ de commentaires en dessous de l’article !

Cycle 4 (3 ème….)

I. Correction des exercices d’hier (Arithmétique)

Exercice 1

On effectue la division euclidienne de 968 par 6 :
• 968 = 6 x 161 + 2
• 968 = 966 + 2
donc 966 ≤ 968 < 972


De même:

On effectue la division euclidienne de 91 par 6 :
• 91 = 6 x 15 + 1
• 91 = 90 + 1
donc 90 ≤ 91 < 96


Exercice 2

• 7 x 15 = 105
• 7 x 16 = 1127

Donc le plus grand multiple de 7 inférieur à 106 est 105


Exercice 3

• 12 x 7 = 84
• 12 x 8 = 96

Donc le plus petit multiple de 12 supérieur à 89 est 96


Exercice 4


1/ Décomposition de 4096 en facteurs premiers :
4096 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 212

2/ Décomposition de 1386 en facteurs premiers :
1386 = 2 x 3 x 3 x 7 x 11 = 2 x 32 x 7 x 11

3/ Décomposition de 9504 en facteurs premiers :
9504 = 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 x 11 = 25 x 33 x 11

4/ Décomposition de 3213 en facteurs premiers :
3213 = 3 x 3 x 3 x 7 x 17 = 33 x 7 x 17

Exercice 5

Les diviseurs sont :
• 212 : {1 ; 2 ; 4 ; 53 ; 106 ; 212 }
• 327 : {1 ; 3 ; 109 ; 327 }
• 100 : {1 ; 2 ; 4 ; 5 ; 10 ; 20 ; 25 ; 50 ; 100 }
• 118 : {1 ; 2 ; 59 ; 118 }


Exercice 6

Un nombre premier est un nombre qui admet exactement deux diviseurs, un et lui-même.

968 est-il premier ?

968 est pair donc 968 n’est pas premier.

1 693 est-il premier ?


Il n’y a pas de diviseurs évidents.
La décomposition en facteurs premiers de 1 693 à la calculatrice donne :

1693 = 1 x 1693 donc 1 693 est un nombre premier.

15 195 est-il premier ?

15 195 se termine par 5.
15 195 est un multiple de 5 donc 15 195 n’est pas premier.

98 585 est-il premier ?

98 585 se termine par 5.
98 585 est un multiple de 5 donc 98 585 n’est pas premier.

II Révisions – Fractions

Exercice 1

  • Quel est le nombre qui multiplié par 3 donne 45 ?
  • Quel est le nombre qui multiplié par 36 donne 85 ?

Exercice 2

Simplifie, si possible les fractions suivantes :

66 / -68

;

-99 / -72

;

86 / -21

;

31 / -29

Exercice 3

Compare

-97 / -33

et

68 / -77


Exercice 4

Calcule :

-21 / 40

+

37 / 43

puis

-8 / 19

-14 / 33

Exercice 5

Calcule :

-13 / -16

x

46 / 37

puis

-14 / 51

:

34 / 24

La solution sera donnée demain

III. Leçon à apprendre:

https://site2wouf.fr/litterale_3eme.php

IV. Exercices en lignes

https://ressources.sesamath.net/matoumatheux/www/num/algebre/comprendre1.htm#3

N’hésitez pas à poser des questions en utilisant le champ de commentaires en dessous de l’article !

Confinement – JOUR 1 – Mathématiques cycles 3 et 4

Cycle 3 (6ème…)

I. Exercice : L’enclos

Un enclos est composé de segments verticaux et horizontaux joignant deux points de la grille et il forme une boucle fermée qui ne se croise pas. L’indice situé dans une case donne le nombre de segments d’enclos entourant cette case.

Exemple :

Activité cycle 3 :l'enclos

C’est à vous de jouer avec cet enclos 10 x 10 :

Attention, élèves de Peguy en classe c’est 8 x 8 !

La solution sera donnée demain

II. Activité en ligne (nombres décimaux) :

https://ressources.sesamath.net/matoumatheux/www/num/decimaux/1cartesQ1.htm#6

Cycle 4 (3 ème….)

I Révisions Arithmétiques :

Exercice 1


Encadre 968 puis 91 par deux multiples consécutifs de 6.


Exercice 2


Quel est le plus grand multiple de 7 inférieur à 106 ?


Exercice 3

Quel est le plus petit multiple de 12 supérieur à 89 ?

Exercice 4


Décompose les nombres suivants en produit de facteurs premiers : 4096; 1386; 9504 et 3213

Exercice 5


Donne tous les diviseurs des nombres suivants : 212; 327; 100 et 118


Exercice 6


Les nombres suivants sont-ils premiers ?


• Neuf-cent-soixante-huit.
• Mille-six-cent-quatre-vingt-treize.
• Quinze-mille-cent-quatre-vingt-quinze.
• Quatre-vingt-dix-huit-mille-cinq-cent-quatre-vingt-cinq.

La solution sera donnée demain

II Calcul littéral, exercices en ligne :

https://ressources.sesamath.net/matoumatheux/www/num/algebre/schema31.htm#3